Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.

نویسندگان

  • Marina V Kameneva
  • Greg W Burgreen
  • Kunisha Kono
  • Brandon Repko
  • James F Antaki
  • Mitsuo Umezu
چکیده

Experimental and computational studies were performed to elucidate the role of turbulent stresses in mechanical blood damage (hemolysis). A suspension of bovine red blood cells (RBC) was driven through a closed circulating loop by a centrifugal pump. A small capillary tube (inner diameter 1 mm and length 70 mm) was incorporated into the circulating loop via tapered connectors. The suspension of RBCs was diluted with saline to achieve an asymptotic apparent viscosity of 2.0 +/- 0.1 cP at 23 degrees C to produce turbulent flow at nominal flow rate and pressure. To study laminar flow at the identical wall shear stresses in the same capillary tube, the apparent viscosity of the RBC suspension was increased to 6.3 +/- 0.1 cP (at 23 degrees C) by addition of Dextran-40. Using various combinations of driving pressure and Dextran mediated adjustments in dynamic viscosity Reynolds numbers ranging from 300-5,000 were generated, and rates of hemolysis were measured. Pilot studies were performed to verify that the suspension media did not affect mechanical fragility of the RBCs. The results of these bench studies demonstrated that, at the same wall shear stress in a capillary tube, the level of hemolysis was significantly greater (p < 0.05) for turbulent flow as compared with laminar flow. This confirmed that turbulent stresses contribute strongly to blood mechanical trauma. Numerical predictions of hemolysis obtained by computational fluid dynamic modeling were in good agreement with these experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermohydrodynamic Characteristics of Journal Bearings Running under Turbulent Condition

A thermohydrodynamic (THD) analysis of turbulent flow in journal bearings is presented based on the computational fluid dynamic (CFD) techniques. The bearing has infinite length and operates under incompressible and steady conditions. In this analysis, the numerical solution of Navier-Stokes equations with the equations governing the kinetic energy of turbulence and the dissipation rate, couple...

متن کامل

Reynolds Stresses and Hemolysis in Turbulent Flow Examined by Threshold Analysis

Use of laminar flow-derived power law models to predict hemolysis with turbulence remains problematical. Flows in a Couette viscometer and a capillary tube have been simulated to investigate various combinations of Reynolds and/or viscous stresses power law models for hemolysis prediction. A finite volume-based computational method provided Reynolds and viscous stresses so that the effects of a...

متن کامل

Laser Doppler Anemometry Study of the Flow in a Blood Filter

Damage to red blood cells can be induced chemically, by osmosis or mechanically. The fluid mechanical effect can be related to the device design, its surface characteristics and to the degree of flow disturbance or turbulence caused by the device. Is generally accepted that the presence of high turbulent shear stresses generated in the flow fields of artificial devices are partially responsible...

متن کامل

Computational Fluid Dynamics Simulation and Experimental Validation of Hydraulic Performance of a Vertical Suspended API Pump (RESEARCH NOTE)

For a long period of time, design and manufacturing technology of high flow rated vertically suspended pumps (VSPs) which have an extensive applications in many industries such as water and wastewater, mining, petrochemical and oil and gas industries, used to be imported from European countries. For the first time in Iran's pump industry, with the support of Ministry of Petrochemical[ah1]  and ...

متن کامل

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ASAIO journal

دوره 50 5  شماره 

صفحات  -

تاریخ انتشار 2004